If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-64=0
a = 14; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·14·(-64)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{14}}{2*14}=\frac{0-16\sqrt{14}}{28} =-\frac{16\sqrt{14}}{28} =-\frac{4\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{14}}{2*14}=\frac{0+16\sqrt{14}}{28} =\frac{16\sqrt{14}}{28} =\frac{4\sqrt{14}}{7} $
| -21=1-2x= | | 9+3x+4x−30=−4 | | 5=8n+5= | | -7=-6n-1 | | 2x+3(2x-4)=44 | | 3y-1+2y+1=180 | | 4r-9(-3r-2)=31r-2 | | -25=-5+n | | (-4x+33)=x | | -7x+5X-9X=0 | | 8v+6=-1+10v | | 2.5(x-4.2)-4.3=5.4 | | 26h-3=23 | | 4/9q=-8 | | 2x-7=7x=5 | | 26h-3=24 | | 2(x^2-4x=3) | | (2x+9)(7x-3)=0 | | 7+4b=17 | | X+1/2+9/4x=-35/8 | | 4x/5-6=22 | | 8(11x-3)+4=332 | | 5y+7Y=96 | | 5x^2-18x-1920=0 | | x(x-10)-3(x-10)=0 | | 9+y÷3=6 | | 56=c-9 | | 7(4x-3)+3(18-5x)-3(4x+3)=-7 | | 28=2x+2(2-4) | | -2t+4=10 | | c+(-90)=-58 | | -4y-2=-6 |